Publications

Google Scholar

22. Spatiotemporal Visualization of Electrocatalysis: From Thin Films to Single Nanoparticles

Smith, P. T.; Huang, J.; Shen, B.; Mirkin, C. A.

In preparation, 2025

21. 33 Unresolved Questions in Nanoscience and Nanotechnology

Mirkin, C. A.; Petrosko, S. H.; Artzi, N.; Aydin, K.; Biaggne, A.; Brinker, C. J.; Bujold, K. E.; Cao, Y. C.; Chan, R. R.; Chen, C.; Chen, P.-C.; Chen, X.; Chevalier, O. J. G. L.; Choi, C. H. J.; Crooks, R. M.; Dravid, V. P.; Du, J. S.; Ebrahimi, S. B.; Fan, H.; Farha, O. K.; Figg, C. A.; Fink, T. D.; Forsyth, C. M.; Fuchs, H.; Geiger, F. M.; Gianneschi, N. C.; Gibson, K. J.; Ginger, D. S.; Guo, S.; Hanes, J. S.; Hao, L.; Huang, J.; Hunter, B. M.; Huo, F.; Hwang, J.; Jin, R.; Kelley, S. O.; Kempa, T. J.; Kim, Y.; Kudruk, S.; Kumari, S.; Landy, K. M.; Lee, K.-B.; Leon, N. J.; Li, J.; Li, Y.; Li, Z.; Liu, B.; Liu, G.; Liu, X.; Liz-Marzán, L. M.; Lorch, J. H.; Luo, T.; Macfarlane, R. J.; Millstone, J. E.; Mrksich, M.; Murphy, C. J.; Naik, R. R.; Nel, A. E.; Oetheimer, C.; Hedlund Orbeck, J. K.; Park, S.-J.; Partridge, B. E.; Peppas, N. A.; Personick, M. L.; Raj, A.; Ramani, N.; Ross, M. B.; Ross, S. B.; Sargent, E. H.; Sengupta, T.; Schatz, G. C.; Seferos, D. S.; Seideman, T.; Seo, S. E.; Shen, B.; Shim, W.; Shin, D.; Simon, U.; Sinegra, A. J.; Smith, P. T.; Spokoyny, A. M.; Stang, P. J.; Stegh, A. H.; Stoddart, J. F.; Swearer, D. F.; Tan, W.; Teplensky, M. H.; Thaxton, C. S.; Walt, D. R.; Wang, M. X.; Wang, Z.; Wei, W. D.; Weiss, P. S.; Winegar, P. H.; Xia, Y.; Xie, Y.; Xu, X.; Yang, P.; Yang, Y.; Ye, Z.; Yoon, K. R.; Zhang, C.; Zhang, H.; Zhang, K.; Zhang, L.; Zhang, X.; Zhang, Y.; Zheng, Z.; Zhou, W.; Zhu, S.; Zhu, W.

Accepted, ACS Nano, 2025

20. Changing the pace of OER catalyst discovery through material megalibraries

Huang, J.*; Wang, Z.*; Pietryga, J.; Ye, Z.; Smith, P. T.; Kulaksizoglu, A.; Xie, K. Torrisi, S. B.; Montoya, J. H.; Sargent, E. H.; Mirkin, C. A.

Accepted, JACS, 2025

19. Traversing the Periodic Table Through Phase-Separating Nanoreactors

Wahl, C. B.; Swisher, J. H.; Smith, P. T.; Dravid, V. P.; Mirkin, C. A.

Adv. Mater. 2025, 37, 2500088.

18. Enhancing Molecular Diversity in Peptoid Oligomers Using Amino Acid Synthons

Smith, P. T.; Franco, J. L.; Kirshenbaum, K.

Org. Biomol. Chem. 2025, 23, 1175-1183.

17.  Molecular Thin Films Enable the Synthesis and Screening of Nanoparticle Megalibraries Containing Millions of Catalysts

Smith, P. T.; Ye, Z.; Pietryga, J.; Huang, J.; Wahl, C. B.; Orbeck, J. K. H.; Mirkin, C. A.

J. Am. Chem. Soc. 2023, 145, 14031-14043.

16.     Megalibraries: Supercharged Acceleration of Materials Discovery

Smith, P. T.; Wahl, C. B.; Orbeck, J. K. H.; Mirkin, C. A.

MRS Bulletin 2023, 48, 1172-1183.

15.  Supramolecular Enhancement of Electrochemical Nitrate Reduction Catalyzed by Cobalt Porphyrin Organic Cages for Ammonia Electrosynthesis in Water

An, L.; Narouz, M. R.; Smith, P. T.; De La Torre, P.; Chang, C. J.

Angew. Chem. Int. Ed. 2023, e202305719.

ChemRxiv: 10.26434/chemrxiv-2022-09q8t

14.  Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO2 Reduction

An, L.*; De La Torre, P.*; Smith, P. T.; Narouz, M. R.; Derrick, J. S.; Chang, C. J.

Angew. Chem. Int. Ed. 2023, 62, e202209396.

Selected as a “Hot Paper.” Also appears in the “Hot Topic: Carbon Dioxide” and “Hot Topic: Photocatalysis” Virtual Issues.

ChemRxiv: 10.26434/chemrxiv-2022-c4sbr

13.  Exploring the Matterverse Using Nanomaterial Megalibraries

Smith, P. T.; Wahl, C. B.; Mirkin, C. A.

Chemistry Challenges for the 21st Century 2022, Chapter 3.7. World Scientific.

12.  Exchange Coupling Determines Metal-Dependent Efficiency for Iron- and Cobalt-Catalyzed Photochemical CO2 Reduction

De La Torre, P.; Derrick, J. S.; Snider, A.; Smith, P. T.; Loipersberger, M.; Head-Gordon, M.; Chang, C. J.

ACS Catal. 2022, 12, 8484-8493.

ChemRxiv: 10.26434/chemrxiv-2022-hss5f

10.  Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron-Catalyzed Electrochemical CO2 Reduction at Low Overpotentials

Derrick, J. S.; Loipersberger, M.; Chatterjee, R.; Iovan, D. A.; Smith, P. T.; Chakarawet, K.; Yano, J.; Long, J. R.; Head-Gordon, M.; Chang, C. J.

J. Am. Chem. Soc. 2020, 142, 20489-20501.

ChemRxiv: 10.26434/chemrxiv.11923176.v1

8.  Supramolecular Tuning Enables Selective Oxygen Reduction Catalyzed by Cobalt Porphyrins for Direct Electrosynthesis of Hydrogen Peroxide

Smith, P. T.; Kim, Y.; Benke, B. P.; Kim, K.; Chang, C. J.

Angew. Chem. Int. Ed. 2020, 59, 4902-4907.

ChemRxiv: 10.26434/chemrxiv.11401359.v1

7.  Hybrid Catalysts for Artificial Photosynthesis: Merging Synergistic Approaches from Molecular, Materials, and Biological Catalysis

Smith, P. T.*; Nichols, E. M.*; Cao, Z.; Chang, C. J.

Acc. Chem. Res. 2020, 53, 575-587.

Published as part of the Special Issue “Electrifying Synthesis.”

6.  Iron Porphyrins Embedded into a Supramolecular Porous Organic Cage for Electrochemical CO2 Reduction in Water

Smith, P. T.; Benke, B. P.; Cao, Z.; Kim, Y.; Nichols, E. M.; Kim, K.; Chang, C. J.

Angew. Chem. Int. Ed. 2018, 57, 9684-9688.

Selected as a “Hot Paper.”

5.  Chelating N-Heterocyclic Carbene Ligands Enable Tuning of Electrocatalytic CO2 Reduction to Formate and Carbon Monoxide through Surface Organometallic Chemistry

Cao, Z.*; Derrick, J. S.*; Xu, J.*; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Coperet, C.; Chang, C. J.

Angew. Chem. Int. Ed. 2018, 57, 4981-4985.

4.  Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins

Nichols, E. M.*; Derrick, J. S.*; Nistanaki, S. K.; Smith, P. T.; Chang, C. J.

Chem. Sci. 2018, 9, 2952-2960.

Part of the themed collection “Most Popular 2018-2019 Catalysis Articles.”

3.  Supramolecular Porphyrin Cages Assembled at Molecular–Materials Interfaces for Electrocatalytic CO Reduction

Gong, M.*; Cao, Z.*; Liu, W.*; Nichols, E. M.; Smith, P. T.; Derrick, J. S.; Liu, Y. S.; Liu, J.; Wen, X.; Chang, C. J.

ACS Cent. Sci. 2017, 3, 1032-1040.

2. BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices

Bowling, H.; Bhattacharya, A.; Zhang, G.; Lebowitz, J. Z.; Alam, D.; Smith, P. T.; Kirshenbaum, K.; Neubert, T. A.; Vogel, C.; Chao, M. V.; Klann, E.

Neuropharmacology 2016, 100, 76-89.

1.  Osmoprotective polymer additives attenuate the membrane pore-forming activity of antimicrobial peptoids

Smith, P. T.; Huang, M. L.; Kirshenbaum, K.

Biopolymers 2015, 103, 227-236.